skip to main content


Search for: All records

Creators/Authors contains: "Elsaesser, Gregory S."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Shifts in Southern Ocean (SO, 40–85°S) shortwave cloud feedback (SWFB) toward more positive values are the dominant contributor to higher effective climate sensitivity (ECS) in Coupled Model Intercomparison Project Phase 6 (CMIP6) models. To provide an observational constraint on the SOSWFB, we use a simplified physical model to connect SOSWFBwith the response of column‐integrated liquid water mass (LWP) to warming and the susceptibility of albedo to LWP in 50 CMIP5 and CMIP6 GCMs. In turn, we predict the responses of SO LWP using a cloud‐controlling factor (CCF) model. The combination of the CCF model and radiative susceptibility explains about 50% of the variance in the GCM‐simulatedSWFBin the SO. Observations of SW radiation fluxes, LWP, and CCFs from reanalysis are used to constrain the SOSWFB. Observations suggest a SO LWP increase in response to warming and albedo susceptibility to LWP that is on the lower end relative to GCMs. The overall constraint on the contribution of SO to global meanSWFBis −0.168 to +0.051 W m−2 K−1, relative to −0.277 to +0.270 Wm−2 K−1. In summary, observations suggest SOSWFBis less likely to be as extremely positive as predicted by some CMIP6 GCMs, but more likely to range from moderately negative to weakly positive.

     
    more » « less
  2. null (Ed.)
    Abstract Using multiple independent satellite and reanalysis datasets, we compare relationships between mesoscale convective system (MCS) precipitation intensity P max , environmental moisture, large-scale vertical velocity, and system radius among tropical continental and oceanic regions. A sharp, nonlinear relationship between column water vapor and P max emerges, consistent with nonlinear increases in estimated plume buoyancy. MCS P max increases sharply with increasing boundary layer and lower free tropospheric (LFT) moisture, with the highest P max values originating from MCSs in environments exhibiting a peak in LFT moisture near 750 hPa. MCS P max exhibits strikingly similar behavior as a function of water vapor among tropical land and ocean regions. Yet, while the moisture– P max relationship depends strongly on mean tropospheric temperature, it does not depend on sea surface temperature over ocean or surface air temperature over land. Other P max -dependent factors include system radius, the number of convective cores, and the large-scale vertical velocity. Larger systems typically contain wider convective cores and higher P max , consistent with increased protection from dilution due to dry air entrainment and reduced reevaporation of precipitation. In addition, stronger large-scale ascent generally supports greater precipitation production. Last, temporal lead–lag analysis suggests that anomalous moisture in the lower–middle troposphere favors convective organization over most regions. Overall, these statistics provide a physical basis for understanding environmental factors controlling heavy precipitation events in the tropics, providing metrics for model diagnosis and guiding physical intuition regarding expected changes to precipitation extremes with anthropogenic warming. 
    more » « less
  3. Abstract

    Shortwave (SW) cloud feedback (SWFB) is the primary driver of uncertainty in the effective climate sensitivity (ECS) predicted by global climate models (GCMs). ECS for several GCMs participating in the sixth assessment report exceed 5K, above the fifth assessment report “likely” maximum (4.5K) due to extratropical SWFB's that are more positive than those simulated in the previous generation of GCMs. Here we show that across 57 GCMs Southern Ocean SWFBcan be predicted from the sensitivity of column‐integrated liquid water mass (LWP) to moisture convergence and to surface temperature. The response of LWP to moisture convergence and the response of albedo to LWP anti‐correlate across GCMs. This is because GCMs that simulate a larger response of LWP to moisture convergence tend to have higher mean‐state LWPs, which reduces the impact of additional LWP on albedo. Observational constraints suggest a modestly negative Southern Ocean SWFB— inconsistent with extreme ECS.

     
    more » « less